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ARTICLE INFO ABSTRACT

Unsupervised feature selection (UFS) aims to reduce the time complexity and storage burden, improve the
generalization ability of learning machines by removing the redundant, irrelevant and noisy features. Due to the
lack of training labels, most existing UFS methods generate the pseudo labels by spectral clustering, matrix
factorization or dictionary learning, and convert UFS to a supervised problem. The learned clustering labels
reflect the data distribution with respect to classes and therefore are vital to the UFS performance. In this paper,
we proposed a novel subspace clustering guided unsupervised feature selection (SCUFS) method. The clustering
labels of the training samples are learned by representation based subspace clustering, and features that can
well preserve the cluster labels are selected. SCUFS can well learn the data distribution in that it uncovers the
underlying multi-subspace structure of the data and iteratively learns the similarity matrix and clustering labels.
Experimental results on benchmark datasets for unsupervised feature selection show that SCUFS outperforms
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the state-of-the-art UFS methods.

1. Introduction

A tremendous amount of high-dimensional images, texts, and
microarray data emerge in the information explosion era. The high-
dimensionality of features brings about heavy storage burden, high
time complexity and performance degradation of the learning ma-
chines [1]. In high-dimensional feature space, the distance concentra-
tion phenomenon makes the classical distance based models, e.g.,
KNN, fail to work [2]. The number of model parameters increases
exponentially with the feature dimension and the number of samples
for model training is also exponential with the number of features.
Moreover, the intrinsic dimensionality of high-dimensional data is
typically small [3—7]. Thus, feature selection aims to find a low-
dimensional feature subspace while preserving the intrinsic data
structure by discovering the noisy, irrelevant and redundant features.

Many feature selection methods have been developed for different
priors of data. According to the availability of the label information,
feature selection methods can be categorized as unsupervised [8—11],
semi-supervised [12] and supervised [13-15] cases. Additionally,
different features can be extracted for one sample [16], and one object
can be described by different modalities as well [17]. Therefore, multi-
view feature selection methods are also proposed [18,19,17]. As the
group, overlapped group or tree group relationships may exist in image
classification or gene expression data, structured feature selection
algorithms are proposed by using the intrinsic relationships among
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features [20-22]. To select features for ultra-high dimensional data,
online streaming feature selection methods are proposed to deal with
sequentially added features while the number of samples is fixed [23—
25]. For social media data, users are inherently linked and the linked
information brings more challenges for feature selection [26].

Among all feature selection methods, unsupervised feature selec-
tion is the most challenging due to the lack of label information.
Generally, there are three kinds of feature selection methods, i.e., filter,
wrapper, and embedding methods. For filter methods, metrics that
reflect the data properties are proposed to evaluate the importance of a
single feature or a feature subset, e.g., variance, Laplacian score [8] and
trace ratio [27]. Wrapper methods select features by the clustering or
classification performance of the learning machines [28]. The perfor-
mance of both filter and wrapper methods is affected by the searching
strategies. Embedding methods combine feature selection and model
reconstruction together, for example, a feature selection vector or
matrix is learned in linear classifier (e.g., support vector machines [29]
and least square regression). Compared with filter and wrapper
methods, the advantage of embedding methods is that they can take
different data properties into account, e.g., manifold structure, data
distribution priors, data reconstruction.

The key solution to unsupervised feature selection is how to
generate the pseudo labels in unsupervised scenario. Researchers
proposed different label generation methods, including spectral em-
bedding [30,31], spectral clustering [32], matrix factorization [9,33],
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dictionary learning [34], consensus clustering [35], etc. Spectral
embedding based methods consider the eigenvectors of the similarity
matrix as the pseudo labels, which reflect the data distribution [30,31].
For spectral embedding based methods, label generation and feature
selection are two independent stages. Then, spectral clustering is
utilized to generate pseudo labels and feature selection is conducted
simultaneously [32]. Both spectral embedding and spectral clustering
based methods emphasize the preservation of sample similarity. Matrix
factorization learns a set of bases and the cluster indicator matrix is
used as the pseudo labels [33,9]. Dictionary learning can learn an over-
complete dictionary and the representation coefficients can reflect the
data distribution as well. Compared with matrix factorization, there are
less constraints and the data can be better reconstructed [34]. Both
matrix factorization and dictionary learning underline data reconstruc-
tion. Fortunately, the priors of data structure, e.g., manifold structure,
can be embedded in feature selection models by the regularization on
the cluster indicator or representation coefficient matrix [36].
Consensus clustering is a kind of ensemble clustering method, which
aims to fuse several existing partitions into the integrated one [37]. In
[35], consensus clustering is integrated with feature selection in that it
can obtain robust and clean pseudo labels.

While various techniques are used to generate the pseudo labels,
they ignore the multi-subspace structure of the data, i.e., the collection
of data from multiple classes or categories lies in a union of low-
dimensional subspaces [38]. The spatial proximity of the data that is
widely used in standard clustering algorithms, generally does not hold
true, when intra-class variations are very large. Subspace clustering
algorithms are then proposed to uncover the low-dimensional multi-
subspace structure. There are four main categories for the existing
subspace clustering methods, i.e., iterative, algebraic, statistical, and
spectral clustering-based methods. Among all these methods, sparse
and low rank representation based subspace clustering algorithms take
advantage of the self-representation property of samples and achieve
effective subspace segmentation results [39]. There are two steps, i.e.,
first learn a similarity graph by sparse or low rank representation and
second conduct spectral clustering on this graph. Representation based
subspace learning methods avoid choosing the right neighborhood size
and dealing with points near the intersection of subspaces.

In this paper, inspired by the success of representation based
subspace clustering, we proposed a novel subspace clustering guided
unsupervised feature selection (SCUFS) algorithm. Different from the
existing methods that generate a local similarity graph by kernel
functions, SCUFS learns a global similarity matrix, which can capture
the multi-subspace structure of data. Additionally, the similarity matrix
and pseudo labels are iteratively updated, which can bring about more
accurate pseudo labels. Experiments on six benchmark datasets
illustrate that SCUFS outperforms the state-of-the-art unsupervised
feature selection methods in terms of both the clustering and classifica-
tion performance.

The structure of this paper is organized as follows: Section 2
introduces the related work of unsupervised feature selection. Section
3 presents the proposed unsupervised feature selection model. Section
4 conducts experiments and Section 5 concludes.

2. Related work

In this section, we will give a brief review of unsupervised feature
selection and subspace clustering.

2.1. Unsupervised feature selection

Let X € R™" be a set of training samples where d and n are the
number of features and samples, respectively. 7 = {f;...;f;;...ify}
denotes the feature matrix, where f; is the ji feature vector.
Unsupervised feature selection aims to select a feature subset from
¥ . Most existing UFS methods can be formulated as:
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J=GX, 0) + T, 6,) 1

where G(X, 0)) is the function that generates pseudo labels and
T (X, 0,) is the function to conduct feature selection. 6, and 6, are
the model parameters.

Generally, 7 (X, 6,) is modeled as a loss minimization problem, i.e.,

T(X, 6,) = loss(X, W) + AR (W) )

where loss(X, W) is the loss function and W € R?*¢ is the feature
selection matrix. ¢ is the number of pseudo classes. Let F € R"%¢ be the
pseudo label matrix. Then loss(X, W) can be formulated as
loss (X, W) = || X"W — F|,.;. Group sparsity regularization is usually
imposed on the feature selection matrix W to remove noisy features.

The performance of a unsupervised feature selection algorithm is
mainly up to G(X, 6)). If G(X, 6)) can effectively uncover the true data
distribution, the performance of a UFS algorithm can be guaranteed.
Researchers have introduced different G (X, 6;) for pseudo label gen-
eration. MCFS [30] and MRSF [31] use spectral embedding and
consider the flat embedding of high-dimensional data as the pseudo
labels. The similarity matrix S is computed and the eigenvectors of S
reflect the data distribution along the corresponding dimensions.
NDFS [32] exploits spectral clustering to learn cluster labels of the
input samples. RUFS [33] and EFUS [9] introduce matrix factorization
with non-negative orthogonal constraints to unsupervised feature
selection. CDLFS [34] relaxes the constraints of matrix factorization
and uses the representation coefficients of dictionary learning to
represent data distribution.

2.2. subspace clustering

The goal of subspace clustering is to find the multi-cluster structure
of data. Among all subspace clustering methods, spectral clustering
based methods are quite effective. There are local and global spectral
clustering based methods. Local methods rely on the similarity matrix.
The disadvantage is that it is hard to deal with the points near the
intersection of two subspaces and is sensitive to choose the neighbor-
hood size [40]. The global methods aim to find a better similarity
matrix to reflect the sample relationships in multi-subspaces. Sparse
and low rank recovery methods assume that one sample can be linearly
represented by a dictionary of the data itself [38,39], which is called
self-representation. Let x; € R¢ denote the i*" sample of X € R4*",
Then x; can be represented as

Xl':XZ,' S. 1. z,-,~:0 (3)

z; = 0 is required to avoid the trivial solution. For all samples X, we
have

X=XZ s.t diag(Z)=0 C)]

where Z € R™" is the representation matrix. Sparse subspace cluster-
ing (SSC) or low rank representation (LRR) seeks for a self-representa-
tion matrix that can well capture the multi-subspace structure. Then a
similarity graph S € R™" is constructed as S = |Z|+27\ZT\ Spectral cluster-
ing is conducted on the similarity graph to get the segmentation of the
data. Sparse and low rank recovery methods can also learn the multi-
subspace structure when there are noise, outliers, corruptions or
missing entries in the data.

3. The proposed model

In this section, we present the proposed model, i.e., subspace
clustering guided unsupervised feature selection (SCUFS).

3.1. Model

Similar to the framework of the existing unsupervised feature
selection (UFS), we also generate the pseudo labels and transform
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UFS to a supervised problem. In this paper, we use representation
based subspace learning to obtain the data distribution of the training
samples.

Given the data matrix X = [x|, X,...,X,] € R,
model is formulated as:

the proposed

X - XZ|j X'W - F .
{ B+ z,l}s_ " Z -1, 2G50,

min
WFZ|+ AITV(FTLF) + A ||W||2,1
F'F=1 F>0 )

where Z € R™" is the self-representation matrix, F € R"*¢ is the
cluster indicator matrix, c is the number of clusters, W € R¢<¢ is the
feature selection matrix, and L € R™" is the Laplacian matrix,
L=D-S§,S= M and D is the diagonal matrix, D; = Z/. Si, M
and A, are the tradeoff parameters. '

The model in Eq. (5) is composed of three parts, i.e., self-
representation, spectral clustering and feature selection. | X — XZ|[ is
to learn the self-representation matrix Z. There are two constraints,
Z™1 =1 and Z(, i) = 0. Z"1 = 1 denotes the data point lies in a union
of affine subspaces. Z(i, i) = 0 implies that the data point can not be
represented by the data point itself. Spectral clustering is to minimize
tr(FTLF) with non-negative orthogonal constraints. Features are
ranked by |||, in descending order, where w; is the i*"* row of W.

As shown in Fig. 1, we present the differences between the proposed
model and the existing works. Firstly, we learn a similarity graph rather
than directly use a similarity matrix computed by the kernel functions,
e.g., cosine similarity or heat kernel. The learned similarity graph by
self-representation can well reflect the underlying multi-subspace
structure of data. However, for the existing models, e.g., RUFS [33],
the neighbors may contain the data points from other subspaces,
especially when the intra variations are very large. Secondly, we
iteratively update the similarity graph S, the pseudo label matrix F
and the feature selection matrix W. As the number of iterations
increases, the S can be more accurate, and therefore we can obtain
better F to model the data distribution.

To show the difference between the learned similarity graph by self-
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representation and the similarity matrix by kernel functions, in
Fig. 2(a), we collect 140 face images of 20 subjects from AR dataset
[41]. Fig. 2(b) is the similarity matrix learned by Eq. (5). Fig. 2(c) is the
similarity matrix learned by RBF kernel function. From the figures we
can see that because of the large within-class variations, the neighbors
searched by the kernel similarity do not necessarily come form the
same subspace. However, by self-representation, the multi-subspace
structure of data can be exactly discovered.

3.2. Optimization and algorithms

In this subsection, we present efficient implementations of the
iterative approach to solve the optimization problem in Eq. (5). In the
algorithm, we update Z, F and W iteratively. In the sequel, we will give
a clear description of the optimization method.

Update Z

To update the self-representation matrix Z, we fix F and W and
ignore irrelevant terms. The optimization problem is rewritten as
follows:
min |X — XZ|2 + 4or (FTLF)s. 1. 271 = 1, Z(i, i) = 0. ©)

z
Note that we can eliminate the first equality constraint in Eq. (6) by
introducing a Lagrange multiplier a,
min [|X = XZ|> + 4t FTLF) + a |V — U'Z|%s. 1. Z(G, i) = 0. )
z
According to [16], X can be replaced with [X7, a*1]" where a
approximates infinity. Thus, the optimization problem in Eq. (7) is
equivalent to the following problem:
min |X — XZ|2 + 4or (FTLF)s. 1. Z(i, i) = 0.
Z (8)

As shown in [16], the optimization problem (8) is equivalent to the

following problem:

mZin IX — XZ|> + %tr(lZlTP)s. t. Z(, i) = 0. )

SCUFS

existing models

similarity matrix

F W

Fig. 1. The differences between SCUFS and the existing models. X is the data matrix, S is the similarity matrix, F is the pseudo label matrix, and W is the feature selection matrix. The
existing models assign the similarity matrix in advance, they only update F and W iteratively. However, in our SCUFS, we update S, F and W iteratively.
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(a) The face images of AR dataset
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(c) Kemel similarity matrix

Fig. 2. The comparison between the learned similarity matrix by Eq. (5) and that computed by kernel functions. (a) shows the 140 training images of AR dataset. (b) is the learned

similarity by our method. (c) is the kernel similarity matrix used RBF kernel and the parameter is 0.1.

(b) (©)

Fig. 3. The learned similarity matrices in 1, 5 and 51 iterations respectively shown in (a), (b) and (c).

Table 1 Table 2
Summary of the benchmark datasets. Classification results (accuracy %) of comparison methods.
Data Instances Features Classes Type Data Laplacian MCFS UDFS SPEC RUFS EUFS SCUFS
warpAR10P 130 2400 10 Image, Face warpAR10P 65.78 73.15 7245 7467 85.73 8095 81.65
warpPIE10P 210 2420 10 Image, Face warpPIE10P  86.96 99.12 94.24 86.48 98.99 96.86 99.37
TOX-171 171 5748 4 Microarray, Bio TOX-171 54.03 66.04 53.94 54.11 65.17 5432 68.89
Prostate-GE 102 5996 2 Microarray, Bio Prostate-GE 66.07 76.63 7428 79.96 75.51 77.52 82.54
ALLAML 72 7192 2 Microarray, Bio ALLAML 71.70 75.77 80.80 84.04 81.72 86.89 92.65
GLI-85 85 22283 2 Microarray, Bio GLI-85 79.72 77.20 84.39 74.55 84.70 78.09 86.63
where P; = ||f! — #/|}3, f' is the i"" row of F. Then, the problem (9) can be min 1z — v|2 + A ps. t. z=0
’ . . N - Vi + L=
solved by using alternative optimization strategy. We fix all the rows of z 2 ' 1mn
Z except it row and we solve i"* row of Z:
1 where v = . As shown in ([16]), the solution of the minimization
. 1
min [|X; — xz"|} + ) lz"ps. . z;=0 (10) problem in Eq (11) is as follows: if k=1, z;=0 and if k # i,
z

where z7 is the " row of Z, p is the " column of P,

X, =X — (XZ — xz") and gz is the ith element of z. The objective in
(10) can be equivalently transformed to the following problem:
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Table 3
Clustering results (NMI %) of comparison methods.

Data Laplacian MCFS UDFS SPEC RUFS EUFS SCUFS
warpAR10P 19.76 1857 44.14 4795 4730 53.96 55.26
warpPIE1IOP  20.60 54.64 3222 39.54 48.87 66.23 66.20
TOX-171 11.86 12.46 10.17 9.83 27.25 17.54 30.54
Prostate-GE 2.22 2.03 6.32 1.96 5.58 5.09 7.64
ALLAML 10.84 11.33 2.48 20.32 1547 11.36 45.64
GLI-85 14.19 18.34 1218 9.20 24.09 12.14 24.65
Table 4
Clustering results (accuracy %) of comparison methods.
Data Laplacian MCFS UDFS SPEC RUFS EUFS SCUFS
warpAR10P 21.03 2217 39.49 45.65 43.49 51.23 52.25
warpPIE10P  20.57 42.02 30.91 36.18 40.77 57.71 57.55
TOX-171 40.49 40.91 3898 38.83 49.29 44.03 51.92
Prostate-GE 58.06 58.11 63.50 5791 60.78 60.95 66.48
ALLAML 69.02 68.24 55.42 75.26  73.61 68.45 83.92
GLI-85 65.87 65.42  69.13 60.20 73.75 64.58 74.27
A A
Ve — 1Pk AT 1Pk
Ap 4 4
. k
2% = sign(vp)(vi| — )+ = A . A
8 4 F v+ |Pk’ i v < — 1Pk
4 4
0, otherwise (12)

where z;, vx and p, denote the k" element of z, v and p, respectively.
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1
min tr (FTLF) + — | X"W = F|;s.t. FIF =L F >0
1 ( ) p I I,1 13)
To eliminate the orthogonal constraint, we add a penalty term
v IFTF — 1| (we set y = 10° in our experiment). Thus, we have the
following optimization problem:

trFTLF) + - |XTW - F
@ il ks o

Fol+7IFTF -1} (14

We introduce Lagrange multipliers @ to remove inequality constraint
and obtain the Lagrange function:

ir (FTLF) + - [X"W = F|l,,

oF, @)= R
+7 IFTF = 1|z — tr (®TF) (15)
We take the derivative of Eq. (15) with F to zero w =0 and we
have:
op (F, @) Z%Q(XTW —F) + 2LF
A . =
ox +4FEF-1) - @ (16)
Then, we get ®:
1
®=2—QX'W —F) + 2LF + 4FF'F - 1
/IIQ( ) 7F( ) a7)

where Q is a diagonal matrix and the i’ element of Q is
Q= m According to [18,42], the Karush-Kuhn-Tucker
condition ®;F; =0 is applied. Thus, we get the following equation:

Update F 1 ;
To update the cluster indicator matrix F, we fix Z and W, moreover, 2—-QX'W - F) o
. . . . e 2z F;=0
omit unrelated items and consider the following optimization problem: +2LF + 4/F(FTF - T) ; (18)
warpAR10P warpPIE10P TOX-171

classification accuracy
classification accuracy

classification accuracy
classification accuracy

classification accuracy
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Fig. 4. Classification accuracy on six data sets with different parameters for SCUFS.
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Fig. 5. Clustering NMI on six data sets with different parameters for SCUFS.
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Fig. 6. Clustering accuracy on six data sets with different parameters for SCUFS.
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Clustering accuracy for warpAR10P (k2=‘| 0)
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Clustering accuracy for warpAR10P (X3=1O)

Clustering accuracy

Fig. 7. Clustering results on warpAR10P with different parameters for SCUFS.

We can use the following updating method:

(LQF + 2/F),
P

F; = E;

1
LF + —QX’W + 2yFFTF);
( AIQ Y )ij 19)

After updating F, we need normalize F to meet the constraint F'F = 1.
Update W
To update feature selection matrix W, we fix Z and F, and omit
irrelevant items. We get the following optimization problem:

1 .
min — || X'W = Flj,; + ||[W
N I [l + Wil 20)

Note that the equation in (20) is equivalent to the following optimiza-
tion problem:

. iTr((XTW -FIGX™W - F))
ming A

+ Tr (WTHW) 21

where G and H are diagonal matrices, their i diagonal elements are
1 1

Gi = Siw-m. 1 anfl Bi = 3w

We set the derivative of Eq. (21) with respect to W to zero. Then, we

have:

1 oTr (X™W — FYTG(X'W — F))
b oW
. oTr (WTHW)

oW (22)

After solving the equation in (22), we get:
W = (XGX” + ,LH)"'(XGF) (23)

We can iteratively update W, G and H until the objective function
converges.

In our algorithm, We update Z, F and W by solving above three
subproblems iteratively until the objective function converges. As for
the stopping criterion, we utilize the loss function in Eq. (5). When the
loss variation ratio is below 10~%, we break the loop. Empirically, we set
the maximum iteration number as 100. We summarize our algorithm
in Algorithm 1.

Algorithm 1. Subspace Clustering guided Unsupervised Feature
Selection.

Input:
The data matrix X = [x;, X,...,X,] € R
The parameters 4, and 4;

Output:

The feature selection matrix W € R4x¢;
1: Initialize W,F and Z.

2: while

3: Update Z by Eq. (12);
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(a) Clustering accuracy for warpPIE10P (k2=10)

Clustering accuracy
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(b) Clustering accuracy for warpPIE10P (k1=10)

Clustering accuracy

Feature #

Fig. 8. Clustering results on six data sets with different parameters for SCUFS.

4: Update F by Eq. (19);
5: Update W by Eq. (23);
6: until It converges.

3.3. Time complexity

In this section, we analyze the time complexity of our optimization
problem. There are three subproblems in our optimization method:
subproblem Z, subproblem F and subproblem W. In subproblem Z,
matrix multiplication is needed for each row of Z with the time
complexity of O (n’d). Therefore, the total time complexity of subpro-
blem Z is O(n’d). In subproblem F, each iteration to update F costs
O(cn?), c is the number of pseudo classes (c < <, d). We use the
efficient algorithm to solve the subproblem W [13]. When n > d, the
time complexity of subproblem W is O(nd? + d* + ndc + d*c). When
d>n, the time complexity of subproblem W s
O(d? + n’d + ndc + n’c). The time complexity of subproblem W is
O (max(n, d) x d?). Thus, the total time complexity of SCUFS in each
iteration is as follows: if n > d, the time complexity for solving Eq. (5) is
O’d) and if d > n, the time complexity for solving Eq. (5) is
O (nd + d?).

3.4. Discussions

In this part, we visually show the variations of the learned similarity

1zl + 121
2

matrix S = in different iterations. The learned similarity ma-

trices in 1, 5 and 51 iterations are shown in Fig. 3(a), (b) and (c),
respectively. We can see that a better S is learned with the number of
iterations increasing. A better similarity graph matrix can induce a
better pseudo label matrix F in Eq. (5), and therefore can lead to a
better unsupervised feature selection result.

4. Experiments

In this section, we conduct experiments on several benchmark
datasets to evaluate the performance of our algorithm, and we compare
SCUFS with state-of-the-art algorithms.

4.1. Datasets

In our experiment, we use six benchmark datasets, including two
face image datasets (warpAR10P and warpPIE10P) and four micro-
array datasets (TOX-171, Prostate-GE and ALLAML, GLI-85). In
Table 1, we summarize the detailed information of these six benchmark
datasets.

4.2. Comparison methods

We compare SCUFS algorithm with six state-of-the-art unsuper-
vised feature selection algorithms: Laplacian Score [8], MCFS [30],
UDFS [43], SPEC [44], RUFS [33] and EUFS [9]. We obtain the codes
of these comparison methods from the original authors and the
following is the summary of the comparison methods:
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(a) Clustering accuracy for GLI-85 (k2=10)
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(b) Clustering accuracy for GLI-85 (7»1=10)
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Fig. 9. Clustering results on six data sets with different parameters for SCUFS.

1. Laplacian Score [8]: Laplacian Score is a filter method and evaluates
features through its power of preserving local manifold structure.

2. MCFS [30]: multi-cluster unsupervised feature selection. MCFS is a
filter method, which detects data distribution by spectral clustering
techniques and selects features using sparse regression.

3. UDFS [43]: unsupervised discriminant feature selection. UDFS
selects discriminative features by exploiting discriminative informa-
tion and group sparsity.

4. SPEC [44]: spectral feature selection. SPEC is also a filter method
and uses spectral analysis to select features. Unlike other feature
selection methods, SPEC is an algorithm unifying supervised and
unsupervised feature selection.

5. RUFS [33]: robust unsupervised feature selection. RUFS performs
nonnegative matrix factorization to do robust label learning and
robust feature selection with group sparsity in the meantime.

6. EUFS [9]: embedded unsupervised feature selection. Like RUFS,
EUFS applies matrix factorization to obtain the cluster bases and the
pseudo class labels and selects features with cluster bases.

4.3. Parameter setting

Following the previous works ([9,43,33]), we use classification
accuracy, Normalized Mutual Information(NMI) and clustering accu-
racy to evaluate our method. The range of parameters is from
{107, 1073,...,10%, 10°} and we record the best classification and
clustering results. We set the number of selected features as
{10, 20, 30,...,150} and take average results of different dimensions

as the final results for all methods. As for Laplacian Score, MCFS,
UDFS, RUFS and EUFS, the neighborhood size is fixed to be 5. We use
nearest neighbor classifier to evaluate classification performance and
K-means to perform clustering algorithm. As K-means algorithm
depends on initialization, we repeat clustering algorithm 20 times with
random initializations, and the average results are adopted.

4.4. Feature selection results

We present the classification accuracy, NMI and clustering accuracy
of different feature selection methods in Table 2—4. The experimental
results illustrate that SCUFS performs well in classification accuracy,
NMI and clustering accuracy and also demonstrate the effectiveness of
our algorithm. There are two reasons why our method achieves
superior performances: (1) our method utilizes subspace clustering to
mine underlying cluster structure of data; (2) the similarity between
data is not specified in advance, we learn the similarity matrix by
iteratively updating F, Z and W. Thus, it reflects real similarity between
the data properly.

4.5. Parameters sensitivity

In Figs. 4-6, we show the experimental results on different 4, and
4. The logarithms (base 10) of parameters are taken.

The results of classification accuracy are shown in Fig. 4, and we
can see that our algorithm is not sensitive to 4 with the same 4,. As for
image data, warpAR10P and warpPIE10P, the classification accuracy of
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/A < 1 is higher than 4 > 1. Thus, we know that the information of
cluster structure is important for image data. It also can be seen that
the biological data are not so sensitive to 4, and 4. However, our
method has higher classification accuracy with 4, = 107! for TOX-171
and the classification accuracy changes rapidly with different para-
meters for Prostate-GE and ALLAML. As for GLI-85, the data is not
sensitive to 4; and 4.

The results of NMI are presented in Fig. 5. The experimental results
are sensitive to parameters using this evaluation criterion. For
warpAR10P, the results suddenly increase to a peak when 4 = 103
and 4 = 10 but are stable with other parameters. As for warpPIE10P,
our method has high NMI with 4 < 1072 and 4 > 10 and the NMI
changes slightly when 107 <=4 <=10"2 and 10°° < =} < =102
Our method has good performance with 4, < 107! for TOX-171 and is
insensitive when 1073 <=4 <=10° and 10 <=4 < =10°% For
Prostate-GE, ALLAML and GLI-85, the results change frequently.
However, the results of Prostate-GE are not sensitive to parameters
when 1072 < =4 <=10° and 10% < = 4 < = 10°. ALLAML has the
same NMI when 10 <=4 <=10%and 1 < =4 < = 10°. The NMI
of GLI-85 changes slightly when 103<=%<=10° and
102 < =4 < = 10°.

From Fig. 6, we can see that the results of clustering accuracy are
not sensitive to parameters on six datasets. For warpAR10P, the results
have a peak when 4, = 10> and 4 = 10. For warpPIE10P, our method
has high clustering accuracy with 4 < 1072 and 4, > 10. The results of
clustering accuracy are relatively smooth comparing with the results of
clustering NMI for the biological data.

The sensitivity of the feature dimension is a very challenging and
unsolved problem in feature selection. We analyze the sensitiveness of
/1, 4 and the number of selected features in Fig. 7, 8 and 9. The
logarithms (base 10) of parameters are taken. The results show that our
method is sensitive to the number of selected features. Fig. 9 shows the
clustering accuracy and clustering NMI drop as the number of selected
feature increases.

5. Conclusions and future work

In this paper, we proposed a subspace clustering guided unsuper-
vised feature selection (SCUFS) method. Compared with the existing
UFS methods that conduct spectral clustering on the kernel similarity
matrix, we learn a similarity graph matrix by self-representation of
samples. The self-representation can well uncover the multi-subspace
structure of data, and therefore we can learn a more accurate data
distribution in unsupervised settings. We proposed a joint framework
that considers self-representation of samples, spectral clustering and
feature selection simultaneously. Experiments on benchmark datasets
show that the performance of the proposed method is superior to the
state-of-the-art unsupervised feature selection methods.

In the future work, we will extend the proposed model to deal with
more complex data, e.g., data with noises, corruptions or missing
entries. Sparse and low rank representation will be introduced to
SCUFS to improve the robustness of the proposed model.
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